NO-dependent blood pressure regulation in RGS2-deficient mice
نویسندگان
چکیده
منابع مشابه
NO-dependent blood pressure regulation in RGS2-deficient mice.
The regulator of G protein signaling (RGS) 2, a GTPase-activating protein, is activated via the nitric oxide (NO)-cGMP pathway and thereby may influence blood pressure regulation. To test that notion, we measured mean arterial blood pressure (MAP) and heart rate (HR) with telemetry in N(omega)-nitro-l-arginine methyl ester (l-NAME, 5 mg l-NAME/10 ml tap water)-treated RGS2-deficient (RGS2(-/-))...
متن کاملAutonomic nervous system and blood pressure regulation in RGS2-deficient mice.
Regulator of G protein signaling (RGS2) deletion in mice prolongs signaling by G protein-coupled vasoconstrictor receptors and increases blood pressure. However, the exact mechanism of the increase in blood pressure is unknown. To address this question we tested autonomic nervous system function and blood pressure regulation in RGS2-deficient mice (RGS2-/-). We measured arterial blood pressure ...
متن کاملRenal actions of RGS2 control blood pressure.
G protein-coupled receptors (GPCRs) have key roles in cardiovascular regulation and are important targets for the treatment of hypertension. GTPase-activating proteins, such as RGS2, modulate downstream signaling by GPCRs. RGS2 displays regulatory selectivity for the Gαq subclass of G proteins, and mice lacking RGS2 develop hypertension through incompletely understood mechanisms. Using total bo...
متن کاملHypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice.
Signaling by hormones and neurotransmitters that activate G protein-coupled receptors (GPCRs) maintains blood pressure within the normal range despite large changes in cardiac output that can occur within seconds. This implies that blood pressure regulation requires precise kinetic control of GPCR signaling. To test this hypothesis, we analyzed mice deficient in RGS2, a GTPase-activating protei...
متن کاملRGS2-deficient mice exhibit decreased intraocular pressure and increased retinal ganglion cell survival
PURPOSE Contractile activity of the trabecular meshwork (TM) and ciliary muscle (CM) influences aqueous humor drainage; however, the mechanisms linking tissue contractility and regulation of aqueous humor drainage are not well understood. Regulator of G Protein Signaling 2 (RGS2), a GTPase-activating protein of the Galphaq family of proteins, plays a critical role in regulation of contractile a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
سال: 2006
ISSN: 0363-6119,1522-1490
DOI: 10.1152/ajpregu.00288.2005